Welcome
0:00
Walkthrough & Requirements
0:00
Where to get help
0:00
Setup Project
0:00
Django as a ML Pipeline Orchestration Tool
0:00
Generate Fake User Data
0:00
Django Management Command to add Fake User Data
0:00
Our Collaborative Filtering Dataset
0:00
Load The Movies Dataset into the Movie Django Model
0:00
Create Ratings Model with Generic Foreign Keys
0:00
Calculate Average Ratings
0:00
Generate Movie Ratings
0:00
Handling Duplicate Ratings with Signals
0:00
Calculate Movie Average Rating Task
0:00
Setup Celery for Offloading Tasks
0:00
Converting Functions into Celery Tasks
0:00
Movie List & Detail View, URLs and Templates
0:00
Django AllAuth
0:00
Update the Movie Ratings Task
0:00
Rendering Rating Choices
0:00
Dislay a User's Ratings
0:00
Dynamic Requests with HTMX
0:00
Rate Movies Dynamically with HTMX
0:00
Infinite Rating Flow with Django & HTMX
0:00
Rating Dataset Exports Model & Task
0:00
Using Jupyter with Django
0:00
Load Real Ratings to Fake Users
0:00
Update Movie Data
0:00
Recommendations by Popularity
0:00
What is Collaborative Filtering
0:00
Collaborative Filtering with Surprise ML
0:00
Surprise ML Utils & Celery Task For Surprise Model Training
0:00
Batch User Prediction Task
0:00
Storing Predictions in our Suggestion Model
0:00
Updating Batch Predictions Based on Previous Suggestions
0:00
ML-Based Movies Recommendations View
0:00
Trigger ML Predictions Per User Activity
0:00
Position Ranking for Movie Querysets
0:00
Movie Embedding Idx Field and Task
0:00
Movie Dataset Exports
0:00
Schedule for ML Training, ML Inference, Movie IDX Updates, and Exports
0:00
Overview of a Neural Network Colab Filtering Model
0:00
Thank you and next steps
0:00